Molecular studies of phenotype variation in canine RPGR-XLPRA1

نویسندگان

  • Tatyana Appelbaum
  • Doreen Becker
  • Evelyn Santana
  • Gustavo D. Aguirre
چکیده

PURPOSE Canine X-linked progressive retinal atrophy 1 (XLPRA1) caused by a mutation in retinitis pigmentosa (RP) GTPase regulator (RPGR) exon ORF15 showed significant variability in disease onset in a colony of dogs that all inherited the same mutant X chromosome. Defective protein trafficking has been detected in XLPRA1 before any discernible degeneration of the photoreceptors. We hypothesized that the severity of the photoreceptor degeneration in affected dogs may be associated with defects in genes involved in ciliary trafficking. To this end, we examined six genes as potential disease modifiers. We also examined the expression levels of 24 genes involved in ciliary trafficking (seven), visual pathway (five), neuronal maintenance genes (six), and cellular stress response (six) to evaluate their possible involvement in early stages of the disease. METHODS Samples from a pedigree derived from a single XLPRA1-affected male dog outcrossed to unrelated healthy mix-bred or purebred females were used for immunohistochemistry (IHC), western blot, mutational and haplotype analysis, and gene expression (GE). Cell-specific markers were used to examine retinal remodeling in the disease. Single nucleotide polymorphisms (SNPs) spanning the entire RPGR interacting and protein trafficking genes (RAB8A, RPGRIP1L, CEP290, CC2D2A, DFNB31, and RAB11B) were genotyped in the pedigree. Quantitative real-time PCR (qRT-PCR) was used to examine the expression of a total of 24 genes, including the six genes listed. RESULTS Examination of cryosections from XLPRA1-affected animals of similar age (3-4 years) with different disease severity phenotype revealed mislocalization of opsins and upregulation of the Müller cell gliosis marker GFAP. Four to ten haplotypes per gene were identified in RAB8A, RPGRIP1L, CEP290, CC2D2A, DFNB31, and RAB11B for further assessment as potential genetic modifiers of XLPRA1. No correlation was found between the haplotypes and disease severity. During mutational analysis, several new variants, including a single intronic mutation in RAB8A and three mutations in exon 3 of DFNB31 were described (c.970G>A (V324I), c.978T>C (G326=), and c.985G>A (A329T)). Expression analysis of stress response genes in 16-week-old predisease XLPRA1 retinas revealed upregulation of GFAP but not HSPA5, DDIT3, HSPA4, HSP90B1, or HIF1A. Western blot analysis confirmed GFAP upregulation. In the same predisease group, no significant differences were found in the expression of 18 selected genes (RHO, OPN1LW, OPN1MW, RLBP1, RPGRORF15, RAB8A, RPGRIP1L, CEP290, CC2D2A, DFNB31, RAB11B, CRX, RCVRN, PVALB, CALB1, FGFR1, NTRK2, and NTRK3) involved in neuronal function. CONCLUSIONS Lack of association between haplotypes of RAB8A, RPGRIP1L, CEP290, CC2D2A, DFNB31, and RAB11B and the disease phenotype suggests that these genes are not genetic modifiers of XLPRA1. Upregulation of GFAP, an established indicator of the Müller cell gliosis, manifests as an important early feature of the disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration.

The canine disease, X-linked progressive retinal atrophy (XLPRA), is similar to human RP3, an X-linked form of retinitis pigmentosa, and maps to the same region in the X chromosome. Analysis of the physical map of the XLPRA and RP3 intervals shows a high degree of conservation in terms of genes and their order. We have found different mutations in exon ORF15 of the RPGR gene in two distinct mut...

متن کامل

Analysis of six candidate genes as potential modifiers of disease expression in canine XLPRA1, a model for human X-linked retinitis pigmentosa 3

PURPOSE Canine X-linked progressive retinal atrophy (XLPRA) is caused by mutations in RPGR exon ORF15, which is also a mutation hotspot in human X-linked retinitis pigmentosa 3 (RP3). The XLPRA1 form of disease has shown extensive phenotypic variability in a colony of dogs that all inherited the same mutant X-chromosome. This variability in onset and severity makes XLPRA1 a valuable model to us...

متن کامل

Independent origin and restricted distribution of RPGR deletions causing XLPRA.

Canine X-linked progressive retinal atrophy (XLPRA) is an inherited blinding disorder caused by mutations in the ORF15 of the RPGR gene and homolog to human retinitis pigmentosa 3 (RP3). The disease is observed in 2 variations, XLPRA1 in Siberian husky and samoyed and XLPRA2 derived from mongrel dogs. A third, neutral, deletion has been described in red wolves. Haplotype analysis of the 633-kbp...

متن کامل

Age-Dependent Disease Expression Determines Remodeling of the Retinal Mosaic in Carriers of RPGR Exon ORFn15 Mutations

PURPOSE. To characterize the retinal histopathology in carriers of X-linked progressive retinal atrophy (XLPRA1 and XLPRA2), two canine models of X-linked retinitis pigmentosa caused, respectively, by a stop and a frameshift mutation in RPGRORF15. METHODS. Retinas of XLPRA2 and XLPRA1 carriers of different ages were processed for morphologic evaluation, TUNEL assay, and immunohistochemistry. Ce...

متن کامل

Age-dependent disease expression determines remodeling of the retinal mosaic in carriers of RPGR exon ORF15 mutations.

PURPOSE To characterize the retinal histopathology in carriers of X-linked progressive retinal atrophy (XLPRA1 and XLPRA2), two canine models of X-linked retinitis pigmentosa caused, respectively, by a stop and a frameshift mutation in RPGRORF15. METHODS Retinas of XLPRA2 and XLPRA1 carriers of different ages were processed for morphologic evaluation, TUNEL assay, and immunohistochemistry. Ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016